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THIRD GRADE FLUID IN AN ORTHOGONAL RHEOMETER 
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ABSTRACT  

The flow of a third grade fluid in an orthogonal rheometer is studied. The admissible 

velocity field used, is proposed by Rajagopal. The flow problem is solved and the velocity 

field is obtained by considering an asimptotic development of the solutions in respect to a 

small parameter. The zero and one order approximations of the unknown functions that 

define the  velocity field are determinated. Some diagrams concerning the velocityprofiles 

are presented.     
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1. INTRODUCTION 

The apparatus called “orthogonal rheometer” has two parallel plates rotating with the 

same constant angular velocity Ω, around two parallel and distinct axes and the fluid to be 

tested fills the space between them. 

 

Figure 1. Orthogonal Rheometer.  

Elements:  

· a = the distance between the two rotational axes 

· d = the distance between the plates  

· Ω = the angular velocity  
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The motion occurring in the orthogonal rheometer has been studied by several authors. 

Abbot and Walters in [1], obtained an exact solution for the linear viscous incompressible 

fluid. They assume that the end effects can be neglected and that the flow can be 

represented as if the boundaries are two infinite parallel plates. They did not assume the 

distance between the axes small or inertial effects negligible. Then assuming the distance 

between the axes small, they studied the flow of a viscoelastic fluid in the same domain 

by means of an expansions of a series of power in respect to a small parameter. 

Huilgol in [2], introduced for the first time the following velocity field:  

 

In this formula u, v and w, are the components of velocity in the direction of x, y and z. 

This field satisfies the equation of motion of a simple fluid, provided inertial effects are 

negligible. If the inertial terms are not ignored, the balance principles are not satisfied.  

Rajagopal and Gupta in [3] and Rajagopal in [4] obtained an exact solution of the flow of 

an homogeneous incompressible fluid of seconds grade in the same domain, without 

presuming that the distance between axes is small. However, the specific form introduced 

by Rajagopal and Gupta in [3], reduces the equations of motion to the same degree as the 

ones for the linear viscous fluid, therefore, the adherence conditions to the boundary 

became sufficient to determine a unique solution. 

In [5], Rajagopal studied the flow of a simple fluid in the same domain, without neglecting 

the inertial effects and the adherence conditions to the boundary were satisfactory for 

determine the solution. Considering the flow an incompressible fluid of second grade, the 

boundary value problem can be solved even when the inertial effects are included.  

Rajagopal and Wineman in [6], studied the flow of a BKZ fluid in the case of the linear 

vascoelasticity. They proved in this paper that for reasonable operating conditions of the 

reomether, the effects of inertia are very small 

In [7], Tigoiu and Niculescu studied the flow of a second order fluid in an orthogonal 

rheometer. With the help of an asymptotic development in respect to the Weissemberg 

number, they proved the existence and uniqueness of the solutions for approximate 

solutions of the flow problem with boundary conditions.  

Pricina, Tigoiu, and Cipu in [8] studied the flow in the orthogonal rheometer of the BKZ 

and Wagner fluids. Regarding the BKZ fluid, they used Currie's potential (see [9]). The 

solution of the problem was obtained by the help of the asymptotic development in 

respect to a small parameter. For the Wagner fluid, they solve the problem in the case of 

slow motions.  

Rajagopal in [5], using the velocity field proposed by Rajagopal and Gupa in [3]: 

  (1) 
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showed that the motion is one of constant stretch history. This type of motions was 

thoroughly analyzed by Coleman, Markovitz and Noll in [10]. 

2. EQUATIONS OF THE MOTION 

In this part are presented the results obtained by Rajagopal in [5]. He studies the flow of a 

simple fluid for which the stress tensor T can be express as a function of the first two 

Rivlin-Eriksen tenors.  

 The equation of motions is: 

                    (2) 

where b is body force and div  is the divergence operator.  

The acceleration for the velocity give by (1) is: 

                                    (3) 

Next, the classical way described by Rajagopal is the one that should be   followed.  

The steps that should be followed are the following:  

We assume that body forces are conservative, which means that they derive from a 

potential: .  

The equation of motion (2) is reduced to:  

          (4) 

where  are versors in the x,y,z directions.  

If it is apply the rotor in the (4), is obtained: 

                   (5) 

Integrating the system (5), it gets: 

                 (6)                                                                          
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where q and s are constants.  

In order to guarantee the symmetry of the velocity, they choose:s = q = 0, ( according to 

[5]), we can get unsymmetrical results of the problem, if s and q are not 0) 

Therefore, the pressure expression becomes the following: 

                         (7)                                       

The equations that governing the motion, now become the following:  

                                                    (8)                                                         

Next, we are going to call the system (8) ,"main system".  

The boundary conditions arise from the adherence conditions on the upper and lower 

plates of the orthogonal rheometer. Since the lower plate is situated at z=0, and the upper 

one at z=d, the boundary conditions for velocity field are: 

                             (9) 

                          (10) 

              (11)      

From (9) and (10) result the following boundary conditions:  

                                           (12) 

Formulating the problem:  

Determine the functions f,g : [0,d] → R that  satisfy equations of motion (8)  in (0,d) and 

the boundary conditions (12). 

3. THE FLOW PROBLEM FOR THE THIRD GRADE FLUID 

 3. 1. Equations of motion   

The Cauchy's stress tensor T for the incompressible fluid of third grade is given by: 

      (13) 

where: 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT 

 

222 

 

· p- hydrostatic pressure 

· μ, - constitutive modules (constants) ; 

·  -the first three Rivlin-Ericksen tensors : 

 

There are tree constitutive restrictions of the third grade fluid with the constitutive 

equation (13) (see V. Tigoiu [11]): 

  

The velocity field is give by (1) . 

The components of the stress tensor T are given by:  

      (14)                                                                                      

If we consider the expression of  (see (14)), we obtain from (7) the pressure 

expression:  

           (15) 

If we introduce the expressions of the  and (stress shear components) from (14) in 

the “main system”, we get the following result:  
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 (16) 

We introduce the dimensionless quantities:  

   (17) 

 where it is clear that the following relations take place:  

 

The dimensionless form of the system (16), is the following: 

 (18) 

  where the dimensionless parameters are given by the following relations:  

                           (19) 

 

Formulating the problem: 

Determine the functions that satisfy equations of motion 

          (20) 

 and boundary conditions: 

                            (21) 
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3.2. The development of the solutions in respect to a small parameter 

The bilocal problem we analyze is (20)-(21). 

We look to the solution of the above problem in an asymptotic development in respect to 

a small parameter. We keep in mind the constitutive restrictions obtained by V. Tigoiu in 

[11]. 

If in the previous system we used:  

 

now we can develop the solutions of this system in respect  to ε ≡  << 1. 

We observe that can consider: 0 < 2( ), because we have the restriction:  +2(

) ≥ 0. Therefore 2(  + ) ≥ −  > 0 ( because  < 0). From constitutive 

restrictions we can also see that: μ −  > 0. 

The development of the  ̄ solutions in respect to ε, is the following:  

                    (22) 

We introduce (22) in the system (20) and identify the coefficients of ε. The system  for the 

zero  order  approximation (  ) is the following: 

                    (23) 

The boundary conditions for the zero order approximation are: 

                    (24) 

The above problem (23)-(24), can be solved exactly to yield: 
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      (25) 

where: 

                          (26) 

This approximation was determined by Pricina, Tigoiu and Cipu in [12]. 

The system for the one order approximation is: 

                         (27) 

where: 

                    (28) 

with   and  given by the (25) . 

The system (27)  can be written as:  

                  (29) 
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The boundary conditions for and  are as follows: 

                                                   (30) 

If we note: 

 , 

then the problem is reduced to finding the solution for the following non-homogeneous 

system: 

                   (31) 

  where we denote: 

               (32) 

If we denote:  
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the conditions (30)  are written as follows:  

                                (33) 

  The general solution of the non-homogeneous system (31), has the form: 

 (34) 

 In this expression  is the particular solution of the  non-homogeneous system and  

are the solutions of the homogeneous associated system: 

                                                           (35) 

The solutions of the homogeneous system verify the following conditions:  

(36) 

The particular solution of the non-homogeneous system (31), verifies the following 

condition:  

        (37) 

The components of the fundamental solution and the components of the particular 

solution, are written in the following way  

, with i,j,k,l,m {1,2,3,4}. 

We determine the  constants:  so that  is a solution of the system (31). 

Keeping in mind that the solution for  given by (34) and the conditions :(33),(36), 

we obtained:  and  the following system for the constants  and : 

                  (38) 

The solutions of this system are: 
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               (39) 

For the solutions of the homogeneous system (35), we get: 

           (40) 

Therefore, the solution of the non-homogeneous system (31), has the following form: 

    (41) 

Where the  are given by formulas (40) and the particular solution  is determined 

numerically by using a Runge Kutta method. In this way, we determined the  

solution, as well as the first order terms:  and .  

In conclusion, we determined the one order approximation of the bilocal problem (20)-(21): 

                         (42) 

4. NUMERICAL STUDY. COMPARISONS.     

For the third grade fluids we used the following restrictions: (see V. Tigoiu [11]) 

 

In the graphics, we used the values: 

. 

We can consider the following three sets of values for the constitutive modules: 
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Set I:  

),125.1(Re1Re000625.0;225.0;8 1

1

1

1

11    mmsmkgmkgsmkg

Set II:  

, 

Set III: 

 

In Fig.2. and Fig.3 are represented the first order approximations:  and 

, for the above three sets of values and ε = 0.1. It can be noticed 

that the values for  are influenced by , which means that the  amplitude is 

increasing if increasing as well.  

 

Figure 2. The approximation for the three sets of values. 
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               Figure 3. The  approximation for the three sets of values. 

In Fig.4-Fig.5, we compare the solutions for the second grade fluid (obtained by 

Rajagopal in [5) ]with the zero order approximations for the third grade fluid. We notice 

that β1 influences quite a little the values of f and in small way the values of g , for all 

three sets of data.  

 

Figure 4. Comparisons between for the (Re = θ = 1.125) second grade fluid and for 

the third grade fluid in the first set of data. 
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Figure 5. Comparisons between:  for the second grade fluid and 

 for the third grade fluid in the first set of value. 

In Fig.6-Fig.7, we compare the numerical solutions of "main system", that have been 

determinated with a method with a finite difference, with zero order and one order 

approximations. Numerical solution is very close to one order approximation while zero 

order approximation is very close to the other two only in the case of .   

 

   Figure 6. Comparison between  and numerical solution for the third 

grade fluid, for first set and  ε = 0.1. 
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Figure 7. Comparison between  and 

numerical solution for third grade fluid, for first set of value and  ε = 0.1. 

      In Fig.8.i s represented the velocity field for  

 

Figure 8. The Velocity field for  

    In Fig.9. are represented the streamlines for     
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Figure 9. The streamlines for  

We observe that the motion occurring in parallel horizontal planes and the streamlines are 

circles. 
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